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We demonstrate a two axis gyroscope by the use of light pulse atom interferometry with an

expanding cloud of atoms in the regime where the cloud has expanded by 1.1–5 times its initial

size during the interrogation. Rotations are measured by analyzing spatial fringe patterns in the

atom population obtained by imaging the final cloud. The fringes arise from a correlation between

an atom’s initial velocity and its final position. This correlation is naturally created by the

expansion of the cloud, but it also depends on the initial atomic distribution. We show that the

frequency and contrast of these spatial fringes depend on the details of the initial distribution and

develop an analytical model to explain this dependence. We also discuss several challenges that

must be overcome to realize a high-performance gyroscope with this technique.

[http://dx.doi.org/10.1063/1.4961527]

Over the last few decades, light-pulse atom interferome-

ters (LPAIs) have proven their outstanding sensitivity and sta-

bility for inertial measurements.1 These sensors are now

making their way out of the laboratory into field demonstra-

tions. Transportable LPAIs have realized accelerometry in a

zero-g plane flight,2 precision gravimetry,3–5 gravity gradiom-

etry,6 and measurements of the Earth’s rotation.7 However,

applications such as inertial navigation will need systems that

are smaller, lighter, and require lower power than the mobile

systems demonstrated so far. This will require new techniques

optimized for use in a compact volume.

Most LPAI inertial sensors use a p=2� p� p=2 pulse

sequence.8 In this scheme, accelerations, ~a, and rotations, ~X,

produce phase shifts given by9

Ua ¼ ~keff �~a T2
R; (1)

UX ¼ 2~keff � ð~X �~vÞT2
R; (2)

where ~keff is the effective wave-vector for the Raman transi-

tions, ~v is the velocity of the atoms, and TR is the time

between consecutive pulses.

In order to realize a sensor, we must have a method

to distinguish these two phase shifts. This is typically done

by combining the signals from two interferometers with

counter-propagating atoms.10 With this technique, LPAIs

based on thermal beams10,11 and laser cooled atoms12–14

have demonstrated performance that exceeds the require-

ments for navigation-grade gyroscopes, which can be

loosely defined11,15 as a short term rotation sensitivity of

1 mdeg=
ffiffiffi
h
p

, a bias stability of 1 mdeg=h, and a scale factor

stability of 1� 10�6. However, the use of multiple atomic

sources comes at the cost of significantly increasing the

size and complexity of these systems.

Recently, it has been shown that it is possible to isolate

UX using a single cloud of atoms by imaging the cloud after

the interferometer sequence. This technique, dubbed point

source interferometry (PSI) by Dickerson et al.,9 exploits the

correlation between the position and velocity created by the

expansion of the cloud. When the final size of the cloud is

much larger than its initial size, each atom’s final position,~r ,

is essentially determined by its initial velocity,~v. This allows

the approximation~r �~v Tex where Tex is the total expansion

time. In this point source limit, Eq. (2) becomes UX ¼ ~kX �~r
with

~kX ¼ 2T2
Rð~keff � ~XÞ=Tex ¼ Fps X n̂: (3)

Here, n̂ is a unit vector perpendicular to both ~X and ~keff and

F ¼ kX=X is a scale factor. For a point source, the scale fac-

tor is Fps ¼ 2T2
Rkeff=Tex. We have assumed ~X � ~keff ¼ 0 for

simplicity. We have also neglected the Raman momentum

kick and gravity because the rotation phase shift depends on

the atoms’ transverse velocity while these effects change the

component of~v along the direction of keff , assuming ~g k ~keff .

If ~g is not parallel to ~keff , a constant phase shift would be

produced, but the phase gradient, Eq. (3), would not change.

In the point source limit, the rotation phase shift

becomes a phase gradient described by Eq. (3), which will

produce a spatial fringe pattern in the state of the atoms. For

an interferometer based on Raman transitions, the output

states correspond to different hyperfine states, and so these

fringes can be imaged with state-selective detection. If keff is

in the z direction and the image plane is the x � y plane, then

az, Xx, and Xy can be determined from Eqs. (1) and (3) by

analyzing the orientation, frequency, and phase of the fringe

pattern.

PSI offers both a much simpler set-up than methods

based on multiple atomic sources and efficient use of the

evacuated volume. It seems to be a promising tool for com-

pact LPAI sensors. However, in a compact system, the

expansion time will be limited by the size of the device, and

it is likely that the point source approximation will not be

valid. To address this issue, we have developed a model for

the PSI fringes when the cloud has a finite initial size. This

can be done by treating the initial cloud as a sum of many

point sources. The first step is to describe the evolution of

one point source.

Consider an infinitesimally small cloud of N two level

atoms with temperature T. At t¼ 0, the cloud begins to expand.

During the expansion, a p=2� p� p=2 pulse sequence isa)Electronic mail: gregory.hoth@nist.gov
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applied. At t ¼ Tex ¼ 2TR þ Td, the density distribution is

imaged. Here, Td represents delays due to experimental

details such as the initial state preparation. The point source

will have evolved into a Gaussian spatial distribution with a

final width rf;ps ¼ Tex

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m

p
. Due to the interferometer,

the state of the atoms will be modulated by a fringe

described by kX. The density distribution of one of the output

states is given by

nps ~rð Þ ¼
N exp � ~r2

2r2
f

 !

2pð Þ
3
2r3

f

1þ c cos ~kX �~r þ Ua

� �� �
2

; (4)

where c is the interferometer contrast.

Now consider the same experiment with an initial cloud

described by a density profile n0ð~rÞ and temperature T. In

this case, the final cloud can be modeled as a sum of all the

expanded point sources that make up the initial cloud.

Formally, this means that the final density distribution is

given by the convolution of n0ð~rÞ with the expanded point

source from Eq. (4)

nfð~r; TexÞ ¼ n0ð~rÞ � npsð~r ; TexÞ: (5)

As a first approximation, we consider the case where the

initial density distribution is a Gaussian with a characteristic

width r0. In this case, Eq. (5) can be evaluated analytically.

The final density profile is a Gaussian modulated by fringes

that is formally identical to Eq. (4). However, the final cloud

size, the phase gradient, and the fringe contrast are all modi-

fied. The phase gradient still takes the form ~kX ¼ FXn̂, but

the scale factor becomes

Fg ¼ Fpsð1� ðr2
0=r

2
f ÞÞ; (6)

where rf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

0 þ ðkBT=mÞ T2
ex

p
is the width of the final

cloud. The spatial fringe contrast decreases with X as

cðXÞ ¼ c0 exp ð�F2
psX

2r2
0ð1� r2

0=r
2
f Þ=2Þ; (7)

where c0 is the interferometer contrast with X¼ 0.

The connection between the contrast and the initial size

comes about because our detection method is only sensitive

to the final position of the atoms. When the cloud has a finite

initial size, atoms with different initial velocities and there-

fore different phase shifts will end up at the same final posi-

tion. We average over this distribution of phase shifts, which

washes out the fringes.

The relationship between the scale factor and the initial

size is also due to the imperfect correlation between the

atoms’ initial velocities and their final positions. In general,

each point r in the expanded cloud contains atoms that are

both slower and faster than vps ¼ r=Tex. For a Gaussian ini-

tial cloud, there are more atoms with v < vps which means

that the average velocity at each point in the expanded cloud

is lower than it would be if the initial cloud were a point

source. Thus, the detected phase gradient is lower for the

Gaussian initial cloud. As the cloud expands, the correlation

between the position and velocity builds up; in the limit

rf � r0, we recover the point source scale factor.

The connection between the initial distribution and the

scale factor predicted by this model represents a significant

systematic effect for a PSI gyroscope and so it is important

to confirm it experimentally. We investigate this effect with

a LPAI based on cold Rb atoms. Our setup has been previ-

ously described,16 so we will only briefly review it here.

Cold atoms are produced by the use of a standard vapor-cell

magneto-optical trap (MOT) in an uncoated cell with a

1 cm� 1 cm cross-section. The MOT is formed 1 cm above

the bottom wall of the cell, which limits the free expansion

time to Tex � 50 ms. The atom interferometer is realized by

driving stimulated Raman transitions8 between the jF ¼
1;mF ¼ 0i and jF ¼ 2; mF ¼ 0i ground states of 87Rb. The

Raman beams are incident from the top of the cell. One

beam is retro-reflected to drive the counter-propagating

Raman transition while the other beam is coupled out by the

use of a polarizing beam splitter. This beam path is used to

image a plane orthogonal to ~keff : Rotations are simulated9,17

by tilting the retro-reflection mirror for the Raman beam at a

rate X. This set up is illustrated schematically in Fig. 1.

In each run of the experiment, we load 8� 106 87Rb

atoms in 2 s. This long loading time is undesirable for a sen-

sor, but it is not important for our study of the scale factor.

In a fully optimized system, the cycle time could be reduced

to 50 ms with the use of atom recapture.18 After loading the

MOT, the atoms are cooled to T � 5 l K by the use of opti-

cal molasses. The atoms are then optically pumped to jF ¼ 1;
mF ¼ 0i and allowed to fall for 10 ms in order to separate the

co- and counter-propagating Raman transitions. The

co-propagating transition is present due to reflections from the

uncoated cell. After this initial free fall, a p=2� p� p=2

pulse sequence is applied with a p pulse duration of 6 l s. The

time between consecutive pulses, TR, is varied from 2 ms to

16 ms. Absorption imaging is used to measure the density dis-

tribution of the atoms in jF ¼ 2i and the total population. The

time elapsed between the two images is 250 l s. From these

two images, the ratio R ¼ ð2NF¼2 � NtotÞ=Ntot is calculated.

FIG. 1. (a) Diagram of our set up illustrating the geometry for interrogation

and imaging. (b), (c) PSI fringes with TR ¼ 8 ms and Tex ¼ 28:3 ms. We

plot R ¼ ð2NF¼2 � NtotÞ=Ntot to cancel out the cloud shape. Each image cor-

responds to one shot. The images are 4� 4 mm.
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This approximately cancels out the cloud shape and reveals

the PSI fringes as shown in Fig. 1.

Although the fringes can be clearly seen, it is difficult to

determine the phase gradient k from images like those shown

in Fig. 1 because of imperfect cancellation of the cloud shape,

due to the expansion of the cloud between the two images,

and because of spatial variation of the interferometer contrast,

due to intensity variation in our Raman beams. In order to

estimate k, we take many shots with the same X while varying

the overall interferometer phase by perturbing the gravity-

compensating frequency ramp between the Raman lasers. The

phase is scanned over four fringes in 100 shots. By tracking

an individual pixel through this set of images and fitting a

sinusoid, the fringe contrast, offset, and phase are determined

as a function of position. An example phase map is shown in

Fig. 2. The phase gradient k is extracted by correcting for 2p
offsets and fitting a plane Uðx; yÞ ¼ kxxþ kyyþ /0. This long

data acquisition procedure gives a reasonable signal to noise

ratio, but it is undesirable for a sensor. In an optimized system,

the phase gradient could be determined from three images by

shifting the overall phase by p=2 between shots.

With this technique, k can be measured as a function of

X. Then, the scale factor, F, can be estimated by fitting the

data to k ¼ FX. By repeating this measurement for different

initial distributions, the connection between the scale factor

and the initial cloud size can be investigated. We consider a

small cloud, produced by starting the optical molasses right

after the MOT, and a large cloud, produced by adding a free

expansion of 3 ms between the end of the MOT stage and the

start of the molasses. During these 3 ms, the cloud expands

rapidly because the atoms have a temperature of T � 220 l K

after the MOT stage. The molasses stage erases the correlation

between the position and velocity that develops during this

initial free expansion; we obtain a cloud with T � 5 l K and

an increased initial size. Table I shows the estimated initial

sizes and temperatures for these two clouds. The clouds are

asymmetric because the “y” direction corresponds to the axis

of our MOT coils.

Figure 2 shows an example of a k vs X measurement for

the four initial distributions in Table I. In each case, the data

are reasonably described by k ¼ FX, but F depends on the

initial distribution.

The relationship between the cloud expansion and the

scale factor can be evaluated by measuring F as a function of

TR. The results, shown in Fig. 3, are consistent with Eq. (6)

in that F decreases as the size of the initial cloud increases,

and F converges to the point source limit as the expansion

time increases. However, Eq. (6) does not describe the mea-

sured scale factors quantitatively because the initial distribu-

tions show significant deviations from a Gaussian profile.

This indicates that detailed knowledge of the initial phase

space distribution is needed to accurately model the scale

factor.

The spatial fringe contrast with X¼ 0 is about 20%, and

it decreases with increasing X. The contrast loss can be

quantified in a model independent way by estimating X50%,

the rotation rate where the contrast has fallen to half of its

initial value. Figure 4 shows X50% as a function of TR. At

each TR, the spatial fringe contrast falls off faster as a func-

tion of X for the larger initial clouds. This indicates that the

contrast loss in our experiment is dominated by the blurring

effect due to the finite size of the initial distribution. In

FIG. 2. Phase gradient k vs rotation rate X for different initial distributions

with TR ¼ 16 ms. Solid lines are linear fits to the data used to estimate the

scale factor F. An example of the phase maps used to estimate k is shown as

an inset for X¼ 44 mrad/s and r0 ¼ 0:22 mm. The image is 4� 4 mm. From

repeated measurements, we estimate that the uncertainty in k is less than

0.2 rad/mm for all of our data.

TABLE I. Estimated initial cloud parameters obtained by measuring the

cloud’s expansion as a function of time. The cloud is modeled as a Gaussian

density distribution with initial width r0 and a velocity distribution at tem-

perature T. Uncertainties were estimated by repeated measurements.

ry ðlmÞ Ty ðlKÞ rx ðlmÞ Tx ðlKÞ

Small cloud 22466 5:360:3 37568 5:660:3

Large cloud 59065 4:460:5 715610 4:960:5

FIG. 3. Scale factor F=Fps vs TR for different initial distributions. Solid lines

show the scale factor predicted by Eq. (6) for the initial cloud parameters in

Table I. The shaded region around each curve represents the error from the

uncertainty in r0 and T. The total expansion time is Tex ¼ 2TR þ 12:3 ms.

The error bars are a quadratic sum of the uncertainties from the linear fits,

the calibration of the imaging system magnification (1% error in F), and the

calibration of the rotation rate (3% error in F).
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addition to enabling rotation measurements with a single

cloud, spatially resolved detection can also increase the

dynamic range of LPAIs under rotation compared to the

common strategy of averaging over the entire ensemble with

a photodiode. For our smallest cloud and longest expansion

time, we estimate that spatially resolved detection increases

X50% by a factor of 4 compared to the contrast loss that

would occur with a photodiode.

Finally, we emphasize that our result shows that the

relationship between k and X in a PSI gyroscope will depend

on the details of the initial atomic distribution in both posi-

tion and velocity. In particular, the scale factor stability

will depend on the stability of the initial distribution. This is

a significant obstacle that must be overcome to realize a

high-performance PSI gyroscope. One strategy that might be

used to mitigate this difficulty is to control the initial distri-

bution with a harmonic trapping potential. In this case, the

initial cloud would be well described by a Gaussian density

distribution and a temperature T. The expansion factor would

be rf=r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

0T2
ex

p
where Tex is the total expansion

time and x0 is the trap frequency. The scale factor stability

would depend on x0 and Tex but not the cloud temperature T.

We have shown that PSI enables rotation measurements

with a single cloud of cold atoms in the regime where the

final cloud size is comparable to its initial size. The advan-

tages offered by PSI in terms of sensor size and simplicity

suggest that it is worthwhile to pursue PSI gyroscopes

despite the challenges discussed here. In the short term, we

plan to develop an optimized detection protocol and charac-

terize the sensitivity of our current set up. In the long run, we

hope to realize a compact, high-performance PSI gyroscope.
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FIG. 4. X50% vs TR for different initial distributions. To determine X50%,

we use spatially resolved fitting to find cðXÞ. Then, linear interpolation is

used to solve cðXÞ=c0 ¼ 0:5 for each pixel. X50% is estimated by averaging

over the cloud. The error bars indicate the spatial variation in X50%. Solid

lines show X50% predicted by Eq. (7) for the initial cloud parameters in

Table I. The uncertainty in r0 and T leads to an error of about 3% in X50%.

The dashed line shows X50% for the contrast loss due to the imperfect over-

lap17 of the atomic wave-packets during the final interferometer pulse for a

wave-packet size kdB ¼ h=mvavg � 130 nm ðT ¼ 5 lKÞ. The dotted line

shows X50% with a detection method that averages over the spatial fringes

for a point source with T ¼ 5 l K.
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